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Abstract

This paper tackles the task of category-level pose esti-
mation for garments. With a near infinite degree of free-
dom, a garment’s full configuration (i.e., poses) is often
described by the per-vertex 3D locations of its entire 3D
surface. However, garments are also commonly subject to
extreme cases of self-occlusion, especially when folded or
crumpled, making it challenging to perceive their full 3D
surface. To address these challenges, we propose Garment-
Nets, where the key idea is to formulate the deformable ob-
ject pose estimation problem as a shape completion task in
the canonical space. This canonical space is defined across
garments instances within a category, therefore, specifies
the shared category-level pose. By mapping the observed
partial surface to the canonical space and completing it
in this space, the output representation describes the gar-
ment’s full configuration using a complete 3D mesh with
the per-vertex canonical coordinate label. To properly han-
dle the thin 3D structure presented on garments, we pro-
posed a novel 3D shape representation using the general-
ized winding number field. Experiments demonstrate that
GarmentNets is able to generalize to unseen garment in-
stances and achieve significantly better performance com-
pared to alternative approaches. Code and data can be
found in https://garmentnets.cs.columbia.edu

1. Introduction

Garments are one of the most common objects in our
life, yet they pose a set of unique properties that make them
incredibly difficult for machines to perceive and interact:

* Infinite degree of freedom (DoF): in contrast to rigid
objects whose pose can be fully specified as a low-
dimensional vector, a piece of garment has near infinite
DoF, i.e., to fully specify its configuration (i.e., pose), we
need to describe positions of all 3D points on the gar-
ment surface. This issue is compounded when we con-
sider category-level generalization, where there are infi-
nite poses can be considered as the “canonical” for differ-
ent garments instances.

How to represent and estimate the full configuration of

.\.\ ‘

Our Approach: GarmentNets

o

4. Pose in
Task Space

1. i’ickup
& Observe

2. Map to
Canonical Pose

3. Completion
with WNF

Figure 1. Category-level Pose Estimation for Garments. The
key idea of GarmentNets is to formulate the garment pose estima-
tion problem as a shape completion task in the canonical space.
This canonical space is defined across garment instances within a
category, therefore, specifies the shared category-level pose. The
output describes the garment’s full configuration using a complete
3D mesh with per-vertex canonical coordinate label.

* Severe self-occlusion: garments are often subject to ex-
treme cases of self-occlusion, especially when folded or
crumpled. This property makes it particular challenging
and sometimes ambiguous to perceive their full configu-
ration from partial visual observation.

* Thin structure: garments often consist of thin 3D geo-
metric structures that are not water-tight. This unique
geometric property makes them ill-suited for typical 3D
shape representations designed for solid rigid objects
(e.g., occupancy grid or signed distance functions).

Due to these challenges, prior works on garments or
cloth perception often build on simplifying assumptions
such as full visibility [21], known instance-level mesh
[18, 26, 5], known physics or full state information in the
initial observation [26], where the problem is reduced to an
instance-level tracking task. As a result, these algorithms
cannot generalize to new garment instances that are not ob-
served during training.
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To address these challenges, we propose GarmentNets,
an end-to-end neural network that estimates the full config-
uration of a garment from a partial observation. The algo-
rithm highlights following key ideas:

To handle the infinite DoF and enable category-level
generalization, we define a normalized coordinate space
for each garment category using a canonical human pose.
This representation allows the algorithm to learn seman-
tically meaningful correspondences between garment in-
stances with different styles, shapes, or configurations.

To handle self-occlusions, the algorithm explicitly per-
forms shape completion under its canonical pose, which al-
lows the algorithm to fully specify the garment configura-
tion even when the observed surface is incomplete.

To handle thin structures, we propose a novel 3D shape
representation using winding number field (WNF) [14].
This representation allows the algorithm to accurately rep-
resent thin cloth structures with strong gradient on the sur-
face but continuous and smooth elsewhere, providing a
more meaningful signal for the network to learn better geo-
metric features.

We study the garments perception task in the context of
robot manipulation, which is more challenging than the on-
body garments perception (i.e., the garment being worn by
people) since the number of possible configurations is much
larger and the potential self-occlusion is more severe. How-
ever, this setup also allows us to leverage simple robot inter-
actions to reduce the possible configuration space. For ex-
ample, we allow the robot to first lifts a crumpled garment
with a random pick point and allows the gravity force to
naturally pulls the cloth into a stable pose. The system then
takes four RGB-D images of the cloth by rotating the grip-
per. This task formulation potentially allows our perception
algorithm to be used in a realistic robot manipulation task.

To the best of our knowledge, we are the first to en-
able category-level full configuration estimation of gar-
ments from partial observations. Our experiments demon-
strate that the trained model is able to generalize to novel
garment instances as well as real world images.

2. Related Work

Pose estimation. Pose estimation for rigid objects is ex-
tensively studied in both computer vision and robotics com-
munity [29, 36, 28, 27, 33], where the task is to predict a 6
DoF vector that describes the object rotation and translation
given the visual observation(s) of a known object instance.
He et al. [30] extended this task definition to category-
level by defining a normalized canonical space (NOCS) for
different object instances within a category and allowing
the algorithm to infer scale. Recently, Li et al. [17] fur-
ther extended this approach to handle category-level articu-
lated objects by defining additional canonical joint configu-
rations. However, different from rigid or articulated objects,

a garment has near-infinite DoF and violates the pieces-wise
rigid body assumption, which makes them inapplicable for
these approaches.

Shape completion. Many shape completion algorithms
are proposed for rigid objects using different 3D representa-
tions, such as occupancy grid [8], distance function [21, 6],
point cloud [35] and implicit function [20]. In particular,
implicit function has been a popular solution to increase
prediction resolution while maintaining low memory con-
sumption. However, garments’ high intra-class shape vari-
ation and thin geometry structure motivates a new class of
shape representations. We proposed a novel winding num-
ber field representation to address these concerns.

Instance-level cloth perception. Vision algorithms for
deformable objects have been mostly focused on instance-
level tasks. In 3D reconstruction, a series of work considers
deformable object from a pure geometric perspective with-
out leveraging any semantic priors [31, 13]. For example,
DynamicFusion [21] warps and accumulates different ob-
servations into a canonical pose (i.e., first frame) as a 3D
volume. However, it is unable to reconstruct region that oc-
cluded throughout the sequence. In constrast, our method
can infer occluded parts of cloth with severe deformations
by leveraging category-level semantic priors. In pose esti-
mation, most of the prior works simplify the task by assum-
ing known initial state [5], instance-level 3D mesh [9], or
additional visual markers [32]. Our approach does not rely
on the above assumptions and instead use simple robot in-
teractions (i.e., random pickup) to reduce the possible con-
figuration space.

On-body cloth perception. Learning methods have
found great success on clothed human reconstruction by
leveraging human body shape prior [16, 25, 22, 23, 38].
However, explicitly representing garments on top of an ar-
ticulated body shape model such as [19] makes these model
unable to express the highly crumpled garment shapes com-
mon in robotic manipulation tasks. Bhatnagar et.al. [4] per-
forms registration only, without shape completion. [3] per-
forms shape completion directly in task space. Combined
with pose estimation, our method is able to perform shape
completion in the canonical space, which is more robust to
large deformation and occlusions.

3. Approach

With a near-infinite degree of freedom, a garment’s full
configuration (i.e., pose) is often described by its pre-vertex
3D locations, which is ill-defined without knowing the full
cloth geometry. On the other hand, only reconstructing the
3D geometry of the garment does not provide semantically
meaningful correspondence between different garment in-
stances (e.g., where is the sleeve?), which are useful for
many applications (e.g., folding).
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Figure 2. Network Overview. Given a colored point cloud of a grasped garment in the task space, the (a) NOCS network predicts
canonical coordinates for the observed points. The predicted coordinates are used to scatter the point-wise features into a 3D volume by
providing the position index in the target volume. The scattered sparse feature volume is passed to a 3D CNN to produce a dense feature
volume. Then the (b) shape completion network infers the garment’s full 3D geometry by predicting a winding number field for sampled
positions p. Finally, the (¢) warp field network predicts an implicit warp field that maps the completed surface (in canonical pose) back to
original task space. The output mesh then encodes the garment’s full configuration using per-vertex canonical coordinate label.

In this paper, we propose to formulate the deformable
object pose estimation problem as a shape completion task
in the canonical space. Given a partial point cloud of
an unseen garment, GarmentNets first maps the observed
points to a category-level canonical space, completes the
garment’s 3D geometry in this space, and finally warps it
back to the observation space. The output configuration is
described by a completed 3D mesh where each vertex is
labeled with its corresponding coordinate in the canonical
space. This canonical space defines a shared category-level
pose by specifying a semantically meaningful correspon-
dence across different garments instances within a category.
The following sections provide details for key algorithm
components and design decisions.

3.1. Pick First then Recognize

Perceiving the full configuration of a garment in its arbi-
trary crumpled state (like examples in Fig. 1) is extremely
challenging and oftentimes impossible. Inspired by Li et
al. [18], we make use of simple robot interactions to re-
duce the possible configuration space of the garment and
increase its visibility. The robot first lifts the crumpled gar-
ment with a random pick point and shakes it to allow the
gravity force to pull down the cloth into a stable pose nat-
urally. After the robot’s gripper lifts the garment, one or
multiple RGB-D images were taken and converted into an
RGB point cloud x in the gripper frame (i.e., the gripping
point is the origin). After that, GarmentNets is trained to
estimate these garments’ poses under different gripping po-
sitions from their point cloud observations.

This “pick up first, ask questions later” strategy is widely
used in robot perception [37, 18, 34], where the robot can
reliably grasp the object without recognizing the pose of the
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Figure 3. Canonical Coordinate (NOCS) for Garments. The
canonical coordinate is defined as the garment in canonical config-
uration scaled into a unit cube using a per category scaling factor.

object. This assumption is valid for most garments since al-
most any surface point on the garments is graspable by the
robot. Meanwhile, picking up the garment helps in isolat-
ing it from clutter, increase its surface visibility which is all
beneficial for the downstream perception algorithm.

3.2. Normalized Canonical Space for Garments

A dense, semantically meaningful label is helpful for
downstream tasks such as folding or pick and place. Man-
ually specifying such label can be expensive and time-
consuming [ 1]. Here, we extended He et al.[30]’s frame-
work by using the point locations in a categorically nor-
malized space as a per-point label, which naturally provides
intra-category correspondence.

Definition A garment’s canonical space (i.e., NOCS) is
defined by simulating the garment worn by a human in T-
pose (provided by CLOTH3D [2]). With the human pose
specified using SMPL [19], the axis-aligned bounding box



for all instances in a category is computed. All instances
within each category are then transformed with the same
scale and translation such that the largest dimension of the
bounding box fits a unit cube (Fig. 3). Note that our al-
gorithm does not depend on the specific definition of the
canonical pose. For other objects, any canonical pose that
provides high surface visibility can be chosen.

Canonical Coordinate Prediction. Given a colored point
cloud observation of the garment, we use PointNet++ [24]
based network to predict a per-point canonical coordinate.
We formulate this prediction as a classification task by di-
viding each axis into 64 bins, where the network predicts
each axis independently. We found this classification for-
mulation is much more effective than regression since it al-
lows the network to model the bimodal distribution of co-
ordinate prediction caused by symmetry. In contrast, L2
regression loss encourages the network to predict the mean
between the two hypotheses (Fig. 7). While the bin size
limits the prediction accuracy, this step’s primary goal is to
scatter the per-point feature vector to roughly the correct
location in the feature volume, which is sufficient with the
current resolution. Although the network does make mis-
takes in this stage due to ambiguities in symmetry (e.g., pre-
dicting left sleeve as right), we observe that the latter stages
of the network (shape completion and warp field predic-
tion) are able to correct some of these errors through learn-
ing. The network is trained with a ground truth NOCS label
using CrossEntropy Loss, and its weights are fixed during
shape completion and warp field module training. During
training, the input point cloud is randomly downsampled
into 6000 points and augmented with a random Z rotation
around the gripping point.

Feature Scattering using Canonical Coordinates. Af-
ter obtaining the coordinate prediction for each observed
3D point, we “scatter” the per-point feature vector into a
323 feature volume. The “feature” being scattered is a
concatenation of the original 3d coordinate of the point,
the predicted canonical coordinate, the confidence of for
NOCS prediction on each dimension, and the second to last
layer 128-dimensional PoinetNet++ feature, in total 137-
dimension. This concatenated feature is passed through
an MLP (multi-layer perceptron) before aggregation. The
“scatter” operation is performed by copying the feature vec-
tor to the target volume location using the predicted NOCS
coordinate. All features mapped to the same volume index
will be aggregated using a channel-wise maximum. The
feature vectors with no corresponding input points are ini-
tialized with zeros. This aggregated sparse feature volume
is further transformed with a 3D UNet [7] to generate a
dense feature volume ¢ (x). The weights of shared MLP
and 3D Unet are trained with shape completion (Sec. 3.3)
and warp field prediction (Sec. 3.4) modules jointly.
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Figure 4. WNF and TSDF computed using the canonical mesh.
Note that TSDF’s zero-crossing surface also includes waist, neck
and sleeve, which is undesirable. In contrast, WNF can differenti-
ate surface and openings using the magnitude of gradient.

3.3. Shape Completion with Winding Number

At this stage, canonical coordinates are predicted for
all visible points with limited resolution. To estimate the
pose of the occluded surface, we perform a volumetric
shape completion in the canonical space. Shape comple-
tion for rigid objects is a well-established task with many
prior works. In this work, we borrow the successful tech-
niques and ideas from the related fields. However, the non-
watertight thin structure of garments raises a unique chal-
lenge for this task.

Typical 3D shape representations, such as occupancy
grids, will be very challenging to represent the thin surface
accurately. The accuracy is limited by its voxel resolution;
however, high resolution volume will result in extremely
sparse data distribution, and high memory consumption.
Using Truncated Signed Distance Function (TSDF), we are
able to represent accurate thin surface structure by giving
different signs for voxels inside or outside the garment (Fig.
4), where the zero-crossing surface precisely describes the
location of the surface. However, this TSDF representa-
tion also creates additional artificial surfaces around gar-
ment openings (e.g., neck, waist) due to the change of signs.

Winding Number Field for Shape Representation. To
address this issue, we adopt the Generalized Winding Num-
ber proposed by Jacobson et al. [15] as the shape represen-
tation. For a point p € R? and a surface S, the generalized
winding number is defined by integrating the solid angle
over the surface. w(p) = £~ [[ sin(¢)dfde.

S

Intuitively, if the surface S is watertight and has no self-
intersection, the winding number equals 1 if p is inside 5,
and 0 if outside. However, if S is not watertight, Jacob-
son et al. has proved that the winding number will be a
harmonic function with the boundary condition that the in-
ner side of the surface equals 1 and the outer side equals
0. When crossing the surface directly, the winding number
jumps from 1 to 0. When crossing a surface opening, the
winding number smoothly transitions from 1 to 0 in a way
that minimizes the Dirichlet energy. This property of the
winding number field allows us to represent whether a point
on the watertight implicit surface w(p) = 0.5 is actually on
the non-watertight surface S using the spatial gradient, as



shown in Fig. 4.

In practice, computing the generalized winding number
field for a triangular mesh will require summing the solid
angle over all triangles for each query point, which is pro-
hibitively expensive. We use the algorithm proposed by
Barillet al. [!] to accelerate the computation. This repre-
sentation is friendly for deep learning since it provides a
strong gradient on the surface but continuous and smooth
elsewhere. To the best of our knowledge, this is the first
time that the winding number field is used in deep learning.

Shape Completion Network. To enable high resolution
prediction with reasonable memory consumption, we use
a network structure that combines the 3D CNN and im-
plicit neural representation, inspired by [20]. Given the
dense feature () is produced by the 3D CNN network
described in Sec. 3.2, the shape completion network pre-
dicts the winding number field as a neural implicit function
w(q) = f(g;¥(x)), where ¢ is a query point in 3D space.
For each query point g, we first trilinear interpolate the 322
dense feature volume to get the feature at this point ¢ (p; x).
Then, this feature is concatenated with the query point and
transformed by an MLP, which outputs a single scalar as
winding number prediction w(q). Then a watertight trian-
gular mesh is extracted using marching cubes from the pre-
dicted winding number field. The magnitude of the spatial
gradient is evaluated for each vertex of the mesh. A constant
threshold is used to determine whether the vertex belongs to
the surface or an opening.

Training and Inference. During training, 6000 query
points are uniformly sampled for each instance. The net-
work is trained with L2 loss. Note that the gradient from
the MLP will be propagated to the 3D UNet. During pre-
diction, f(g;(x)) will be evaluated for all sample points
to generate the final winding number field volume. For sim-
plicity, we directly predicted a dense 1282 winding number
field volume by slicing it into 8 643 volumes.

3.4. Canonical to Task Space Mapping

Finally, we would like to map the predicted mesh from
the canonical space back to the task space (i.e., the coordi-
nate frame of the original input point cloud, where the grasp
point is origin). This output informs the robot about the full
configuration of the garment in the observation space, in-
cluding the occluded parts.

Phsyics Simulation. One possible approach is to physi-
cally simulate the pose of predicted canonical mesh with
the predicted grasp point, assuming that the physical pa-
rameters of the garment are known. Since we now know
the grasp location in the input point cloud (i.e., origin), we
can infer the grasp point on the predicted mesh by using the
canonical coordinate prediction of the observed point that
is closest to the origin. By simulating the physical process

of 3D mesh being gripped by the grasp point, we can map
the prediction back to task space. Since the simulated re-
sult will be ambiguous up to a rotation around the gravity
vector, we can compute the optimal rotation alignment by
minimizing its Chamfer distance with respect to the input
point cloud. However, as shown in our experiments, this
approach does not yield the best quantitative result due to
its sensitivity to incorrect gripping point prediction or mesh
reconstruction. The assumption about known physical pa-
rameters also limits its applicability. Therefore we also pro-
pose to directly infer the per-vertex warp field using a neural
implicit function.

Implicit Warp Field Prediction Network. In this ap-
proach, we predict the warp field as another implicit neural
function g(p;¥(x)) € R? that takes in a sample position
p and infers the warp field for that position (i.e., its task
space location). In practice, while g(p; ¢ (z)) is defined for
all points in p € R?, we can only obtain its ground truth
value on the garment surface. If the canonical space mesh
is predicted with error, we rely on the neural network’s gen-
eralizability to obtain the warp field prediction.

Note that in the feature scattering step, the observed
point location is included as part of the feature that is de-
livered into the sparse feature volume. Leveraging this in-
formation, the network gains additional robustness against
mirrored predictions. For example, if the point belongs to
the left sleeve is predicted on the right side of canonical
space, it’s task space coordinate and features will also be
delivered to the right side of of the feature volume, which
can make ¢(p; ¥ (x)) to predict the left sleeve’s task pace
coordinate for that point p, resulting in correct location.

Training and Inference. During training, 6000 points are
uniformly sampled on each ground truth mesh surface. The
warp field network is trained with L2 loss. The winding
number field and warp field modules are trained simultane-
ously using a shared feature volume (). The loss of the
two modules are added with equal weight. During predic-
tion, each vertex in the predicted canonical mesh surface is
used as a query point to predict task space coordinate.

4. Evaluation

Data Generation. We use canonical pose meshes from the
CLOTH3D dataset [2] to generate our data. The dataset
has six garment categories. We simulated each garment in-
stance 21 times using a randomly sampled gripping point.
We used Blender to simulate the physics and render the
ground truth images (i.e., RGB-D images, UV maps and
object masks). The training, validation, and testing set are
disjoint at the garment instance level.

Metric: We use the following two metrics for evaluation:
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Figure 5. Qualitative Results on Unseen Garment Instances (Simulation). From left to right shows the input and output of each stage.
The ground truth and predicted grasp points are shown as red spheres. Note that despite that the predicted gripping point on the Dress and
Trousers example are on the wrong side, the final pose were still predicted correctly, thanks to the warp field prediction.

¢ Symmetric Chamfer Distance (D.). This metric mea-
sures accuracy and completeness for surface reconstruc-
tion. The accuracy metric is defined as the mean L2 dis-
tance of points on the output mesh to their nearest neigh-
bors on the ground truth mesh. The completeness metric
is defined similarly but in the opposite direction. We esti-
mate both distances efficiently by randomly sampling 10k
points from both meshes and using a KD-tree to estimate
the corresponding distances. D, is measured in task space
for Tab. 1 and in canonical space for Tab. 2.

¢ Correspondence Distance (D,,). Similar to D, we com-
pute point-wise L2 distance between the predicted surface
and the ground turth surface. However, the correspon-
dences are established using the closest point between
predicted and ground truth NOCS labels instead of the
closest point in 3D. This metric measures the pose esti-
mation accuracy.

5. Experimental Results

Fig. 5 and 10 shows qualitative results of GarmentNets
on unseen garments for simulated and real data. Following
sections discuss the qualitative results and ablation studies.

Comparison to Alternative Approaches. To the best of
our knowledge, there is currently no prior work that per-
forms our task exactly (i.e., category-level garment pose es-
timation). To provide baselines for comparison, we con-
sider the following alternative approaches: (1) NN: retrieve
nearest neighbor example in training dataset using global

PointNet++ feature, extracted from input point cloud obser-
vation. (2) Direct: performs shape completion and canoni-
cal coordinate labeling in the task space.

Tab. 1 shows that while [NN] can achieve similar Cham-
fer distance (D.), the pose estimation error (D,,) is signif-
icantly higher, indicating that the retrieved nearest neigh-
bor mesh does not share a similar configuration as the in-
put observation, while the geometry might be similar. The
small gap in Chamfer Distance is because in task space, all
the garment surfaces are crumpled and close to each other.
Therefore, naively measuring surface distance using closest
point correspondence cannot reflect the algorithm’s perfor-
mance on pose estimation.

Comparison with [Direct] shows the benefit of canonical
space representation. By mapping the partial observation
into a canonical space, the network can leverage a stronger
shape prior, which is invariant to the garment configura-
tions. Instead, directly performing shape completion in task
space requires the network to reason about all possible con-
figurations, which is much more challenging.

NOCS Prediction: Classification v.s. Regression. Due
to the symmetry in garments, we found that the classifica-
tion loss is more effective for NOCS prediction than regres-
sion loss. As shown in Fig. 7, for a set of selected points
on the left sleeve, the classification network predicted a bi-
modal distribution, expressing that the points are likely to
be on the same location of either left or right sleeve. In con-
trast, the regression model predicts coordinates in the mid-
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Figure 6. Comparison with Alternative Approaches. NN: near-
est neighbor retrieval. Direct: directly perform shape completion
and NOCS prediction in the task space.

‘Method ‘ Dress Jump. Skirt Top Pants Shirt

D. | NN 209 189 218 1.82 139 1.69
Direct | 13.62 63.81 1255 9.63 11.12 9.40
Ours 212 182 214 154 141 1.63

D, | NN 12.74 1338 20.55 11.57 1243 12.11
Direct | 48.32 81.79 39.73 31.19 36.44 43.43
Ours 6.63 6.06 734 447 437 494

Table 1. Pose Estimation. While NN achieves comparable Cham-
fer distance (D.), the pose estimation error (D)) is significantly
higher, indicates that the retrieved mesh does not share similar
configuration as the input, while the geometry might be similar.
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Figure 7. Classification v.s. Regression. We visualize the canoni-
cal coordinate prediction for selected points (i.e., within the red
box on the left sleeve). The histogram distribution shows that
while classification model predicts a bimodal distribution, the re-
gression model predict a distribution that is close to the mean of
the two possible hypotheses, which is far from either solutions.

dle of two possible locations. This difference is also visible
on the final NOCS coordinates visualization, where the re-
gression model tends to map all observations to the middle
section of the cloth. Quantitatively, the classification model
also produces lower error in NOCS prediction comparing to
the regression model: 0.14 v.s. 0.16 (in NOCS space) and
0.06 v.s. 0.11 if we consider symmetry in the error compu-
tation (i.e., calculating minimal distance between the pre-

dicted NOCS and ground truth as well as left-right mirrored
ground truth labels).

Shape Representation. As shown in Fig. 8, using
the gradient magnitude of the winding number field, our
method is able to predict the front opening of jackets or
waist for pants. In contrast, TSDF cannot predict the sur-
faces with openings. The ability to predict opening quanti-
tatively improves our evaluation metrics and informs down-
stream tasks such as motion planning and physical simu-
lation about the topology of the garment. Occupancy grid
can represent the cloth with openings as a watertight surface
with genus > 0. However, its prediction accuracy is lim-
ited by volume resolution. While increasing grid resolution
improves the surface accuracy, it will result in sparse data
distribution that negatively impact the network training. In
our experiments, a 1283 occupancy grid has an occupancy
rate of 0.4%, which caused the network to predict only zero
value. Therefore, we decrease the occupancy grid resolu-
tion to 642 for evaluation. Similar to Occupancy grid, Trun-
cated Unsigned Distance Function (i.e. TDF) causes the
network to predict over smoothed distance field, result in
thick surface prediction and lower performance in most of
garment categories. However, the thick surface prediction
is better at capturing thin strips on Tops, which the winding
number field tends to miss. Overall, our method yields a
26.7% improvement over TSDF, 18.7% improvement over
TDF and 32.2% improvement over occupancy grid.

Method ‘ Dress

OCC 2.94 3.00 244 143 203 250
TSDF 2.45 1.76 303 238 144 198
TDF 2.55 2.18 208 122 167 211
Ours 1.94 1.45 200 130 1.03 1.70

Jumpsuit  Skirt Top Pants Shirt

Table 2. Shape Completion Error. with different shape represen-
tations. The error is measured using Chamfer distance (cm) under
the canonical pose. Occ: occupancy grid, TSDF: truncated signed
distance function, TDF: truncated unsigned distance function and
Ours: winding number field.

Learned Warp Field v.s. Physics Simulation. As we
discussed in Sec. 3.4, there are two ways to convert the
completed 3D mesh back to the task space: (1) using
physics simulation with rotation alignment and (2) using
a learned implicit warp field prediction network. Tab. 3
and Fig. 9 shows the comparison of these two approaches.
While physics simulation can generate physically plausible
results, the learned warp field often yields more accurate
predictions. This is achieved by self-correcting NOCS pre-
diction error in the warp field prediction step using the raw
task space point coordinate carried in the feature volume.

Testing with Realworld Data. In this experiment, we
want to validate the algorithm’s performance with real



Input: Winding Number ~ Truncated Signed Truncated Occupancy
Canonical Coord. Pred Fleld Distance Function Dlslznce F unction Grid
1.0 1.0 1.0 0.0 05

|
&

Figure 8. Shape Completion. The magnitude of spatial gradi-
ent is used to predict surface openings in winding number field
(our representation). TSDF can only represent water-tight surface.
TDF predicts thick, over-smoothed surface. Occupancy grid can
not represent fabric thinner than the voxel size. On the ground
truth mesh, grey indicates visible surface in input, blue indicates
occluded surface.

‘Method ‘Dress Jump. Skirt Top Pants Shirt

D, | PhysSim | 2.57 242 241 331 1.64 192
Ours 212 182 214 154 141 1.63
D,

PhysSim | 17.11 16.80 17.43 15.67 14.74 17.58
Ours 6.63 6.06 734 447 437 494

Table 3. Canonical to Task Space Transform. We compared the
mapping predicted by the implicit warp field and physic simulation
using completed mesh and predicted gripping points. Overall, the
implicit warp field is able to predict a more accurate mapping by
potentially correct errors produced in earlier steps.

world data. To do so, we uses a URS robot arm to ran-
domly pick up garment on the table and capture an RGB
Point Cloud using an iPhone 12 Pro Max. We filter back-
ground points by applying a constant threshold on the x,y,z
coordinate. Fig. 10 shows the qualitative visualization of
algorithm prediction. While the algorithm is trained with
simulated data, the model is able to complete 3D geome-
try for different garment instances and estimate its pose in
the grasped state. Note that all the garments used in this
experiment are not presented during training.

Ground Truth ~ Completed
Shape Shape

Physics ~ Warp Ground
Simulation  Field Truth
I»

Figure 9. Wrap Field Prediction v.s. Physic Simulation. While
physics simulation can always provide physically plausible map-
ping, wrap field prediction overall generates a more accurate es-
timation by correcting the errors introduced in earlier steps. For
example, the warp field prediction is able to self-correct the mir-
rored gripping point prediction in both cases (a,b).

Raw Input Shape
Point Cloud

Pose in Task Space

Garment Point Cloud ~ Completion WarpField PhysSim

Figure 10. Qualitative Results on Unseen Garment Instances
(Real World Data). We validate our algorithm on realworld gar-
ments where the garments is lifted by the robot arm and the point
cloud captured with iPhone 12 Pro Max.

6. Conclusion

We presented GarmentNets for category-level garments
pose estimation from a partial point cloud observation. Ex-
periments demonstrate that GarmentNets is able to general-
ize to unseen garment instances for both real-world and sim-
ulated images and achieve significantly better performance
compared to the alternative approaches. While achieving
promising testing results with real-world data, training Gar-
mentNets requires a large amount of high-quality data with
detailed labels (e.g., pre-aligned 3D meshes and dense cor-
respondence labels), which are all difficult to obtain for
the real-world data. Future work could consider develop-
ing self- or weakly- supervised methods that would allow
training such algorithm directly with real-world data with-
out expensive data annotation.
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A. Network Architecture Details

Canonical Coordinate Prediction Network To predict
per-point canonical coordinate, we used a PointNet++ [24]
network in Multi-Resolution Grouping (MRG) configura-
tion. The network consists of 3 Set Abstraction layers and 3
Feature Propagation layers. Detailed parameters are shown
in Tab. 4. The final per-point 128 dimensional feature vec-
tor is transformed with a 3-layer MLP to perform 3 x 64
way classification with Cross Entropy Loss.

Layer ‘ SA Radius SA Ratio SA Features FP k FP Features

1 0.05 0.5 128 3 128
2 0.1 0.25 256 3 128
3 Inf 1 1024 1 256

Table 4. PointNet++ Parameters. SA: parameters for Set Ab-
straction layers. FP: parameters for Feature Propagation layers.

Feature Completion Network (3D CNN) To transform
the sparse feature volume scattered from per-point features
to a dense feature volume, we used a symmetrical 3D UNet
[7] architecture with 4 levels of encoder/decoder pairs. Each
level of encoder/decoder has 32 feature maps.

Shape Completion Network To predict Winding Num-
ber Field (WNF), the interpolated features from dense fea-
ture volume is transformed using a 3 layer MLP with feature
dimensions [512, 512, 1].

Warp Field Network Similar to the Shape Completion
Network, the interpolated features are transformed using a
3 layer MLP with feature dimensions [512 ,512, 3].

B. Additional Results

Fig. 12 and 13 show additional results on real world and
simulated data respectively. The real world point cloud are
collecting using an iPhone 12 Pro Max.

Garment Category Classification Our algorithm de-
scribed in the paper assumes known garment category for
the input point cloud. When dealing with a mixed pile of
garments, we assume that the category can be inferred us-
ing a classifier.

To validate this assumption, we trained a simple image
classifier using only RGB images. The model uses an Ima-
geNet [ 1 0] pre-trained ResNet-50 [12] backbone to extract a
2048 dimensional feature. The feature is then transformed
using a 3-layer MLP to perform 6 way classification with
Cross Entropy Loss.

The classifier is trained on each view independently.
During prediction, we use the majority ensemble of all 4
views. This simple model yields 93.85% prediction accu-
racy on the test set. The confusion matrix is shown in Tab.
5.

Dress Jumpsuit Skirt Top Trousers Tshirt

Dress 0966 0.020 0.003 0.001 0.005 0.005
Jumpsuit | 0.003  0.956  0.000 0.000 0.010  0.008
Skirt 0.162 0.010 0.778 0.013  0.030  0.006
Top 0.001  0.004 0.002 0.979 0.009 0.004
Trousers | 0.010  0.025  0.005 0.009 0.944  0.008
Tshirt 0.021 0.026 0.003 0.026 0.058 0.866

Table 5. Confusion Matrix for Image Classification.
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Figure 11. Error distribution and correlation. The correspon-
dence distance vs canonical coordinate prediction error for Dress
category is shown in blue dots. The line of slope 1 is shown in red.
The correspondence distance error histogram is shown in orange.

Failure mode analysis Fig. 14 shows various failure
cases on unseen simulation data. Due to low sharpness in
the predicted winding number field, the canonical recon-
struction for the Top and Shirt example have missing faces
around the shoulder area. The Jumpsuit, Skirt and Pants ex-
ample have over-smoothed warp field prediction, resulting
in inaccurate task space mesh. The Dress example has miss-
ing shoulder strap due to winding number field’s inability to
represent wire-like structure.

Error distribution and correlation As shown in Fig. 11,
the correspondence error is highly correlated to the canon-
ical coordinate error. This suggests that jointly optimizing
for both metrics might yield performance improvement.

Training Testing Split 'We use CLOTH3D dataset [2] for
data generation. Tab. 6 shows the number of garment in-
stances in training testing split for each category.

‘Dress Jumpsuit Skirt Top Trousers Tshirt

training 1631 1825 376 840 1353 889
validation | 203 227 46 104 169 111
testing 203 227 46 104 169 111

Table 6. Training, Validation and Testing Split. The number of
garment instances used for each category. Each garment instance
is simulated 21 times using randomly selected gripping point.



C. Limitations and Future Work

GarmentNets demonstrates promising result on real-
world data while being trained only on synthetic data. How-
ever, the inability to propagate gradients from shape com-
pletion and warp field prediction modules to the canoni-
cal coordinate prediction module prevents us form training
end-to-end. More specifically, the correspondence error is
highly correlated to the canonical coordinate error, which
suggests that jointly optimizing for both metrics might yield
performance improvement. This limitation also requires us
to manually define a dense correspondence from input to the
canonical space, which is expensive to obtain on real-world
data.
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Figure 12. Qualitative Results on Unseen Garment Instances (Real World).
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Figure 13. Qualitative Results on Unseen Garment Instances (Simulation).
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Figure 14. Failure cases on Unseen Garment Instances (Simulation).



